Thursday, 15 November 2007

SQUFOF

Shanks' square forms factorization was devised as an improvement on Fermat's method.

Here is its entry on Wikipedia:
http://en.wikipedia.org/wiki/SQUFOF

and here is its implementation in superfac9:
BigInteger factorizeshanks(BigInteger n) {
BigInteger a = new BigInteger("0");
BigInteger f = new BigInteger("0");
BigInteger h1 = new BigInteger("0");
BigInteger h2 = new BigInteger("0");
BigInteger k = new BigInteger("0");
BigInteger p = new BigInteger("0");
BigInteger pp = new BigInteger("0");
BigInteger q = new BigInteger("0");
BigInteger qq = new BigInteger("0");
BigInteger qqq = new BigInteger("0");
BigInteger r = new BigInteger("0");
BigInteger te = new BigInteger("0");
BigInteger i = new BigInteger("0");
BigInteger count = new BigInteger("0");

k = sqrt(n);

if (fastsquareQ(n)) return k;

a=k; h1=k; h2=ONE; pp=ZERO; qq=ONE; qqq=n; r=ZERO;

for (count=ONE;count.compareTo(TENTHOUSAND)<0;count=count.add(ONE)) {
p=k.subtract(r);
q=qqq.add(a.multiply(pp.subtract(p)));
a=(p.add(k)).divide(q);
r=(p.add(k)).remainder(q);
te=(a.multiply(h1)).add(h2);
h2=h1;
h1=te;
pp=p;
qqq=qq;
qq=q;
te = sqrt(q);
i=i.add(ONE);
if ((i.remainder(TWO).compareTo(ZERO))!=0 || !fastsquareQ(q)) continue;
te=h2.subtract(te);
f=n.gcd(te);
if (f.compareTo(ONE) > 0 && f.compareTo(n) < 0)
return f;
}

return f;
}

No comments: