The Schonhage-Strassen (SSA) is an asymptotically fast multiplicative algorithm for large integers, developed in 1971.
http://en.wikipedia.org/wiki/Schönhage-Strassen_algorithm
It uses Fast Fourier transforms (FFTs) (more on these at a later date hopefully) and its run-time complexity is of order nlognloglogn. [Note that the FFT must be performed modulo 2^n+1 for a suitable n, but by choosing n large enough this equates to a regular multiplication]
This means that SSA outperforms Karatsuba or Toom-Cook for numbers with tens of thousands of digits or more. An example of its implementation is in GIMPS' Prime95/mprime software. A second example is the recent addition of SSA to the open-source math library GMP.
Wednesday, 21 November 2007
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment